

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI SCIENZE MEDICHE VETERINARIE

PhD in Veterinary Sciences

Candidate: Cristina Algieri **Tutor:** Salvatore Nesci *Curriculum:* Basic Sciences Cycle: XXXIV

Modulation of the F₁F₀-ATPase and mitochondrial bioenergetics in species of veterinary interest

The F_1F_0 -ATPase is an enzyme complex embedded in the inner mitochondrial membrane and composed of the hydrophobic (F_0) and the hydrophilic (F₁) domains, mutually connected by a lateral stator and an inner stalk. The enzyme can dimerize and oligomerize and the dimerization supports the curvature of the mitochondrial cristae. The enzyme is well known to catalyze the synthesis of ATP in aerobiosis, the high-energy molecule required by most life events. However, under certain physio-pathological conditions, accompanied by an increase in Ca²⁺ concentration in mitochondria, Ca²⁺ can bind to the enzyme and replace the natural cofactor Mg²⁺ [1]. Recent studies suggest that he Ca²⁺-activated F-ATPase would trigger conformational changes which, once transmitted from F_1 to the membrane F_0 domain, dissociate the dimer and open an high-conductivity channel, defined as mitochondrial permeability transition pore (mPTP) [2]. Since the mPTP opening initiates cascade events leading to cell death,

The dual enzyme function, namely its vital role as main ATP maker and its lethal role as presumptive mPTP component, makes the F_1F_0 complex an extremely attractive pharmacological target. Accordingly, mPTP modulators may be exploited to counteract mPTP-related pathological [°]conditions such as neurodegenerative diseases, cancer, ischemia/reperfusion injury, muscular dystrophies [3] and mitochondrial dysfunction [4].

As first approach, on considering this intriguing perspective, this work aims at clarifying the molecular mechanisms by which Ca^{2+} binds to the F_1F_0 -ATPase and the relationship between the Ca²⁺-dependent hydrolytic activity of the enzyme and the mPTP opening. The study was carried out in heart mitochondria from pig, a widely exploited model in translational medicine.

most likely Ca²⁺ activates the lethal role of the enzyme.

• Inhibitors of the F_1 domain (Is) and inhibition parameters

Table	1 Is	A ⁻ m	TP M	M m	g ²⁺ M	IC ₅₀		k _i		k' _i	In me	hibition chanism	
			6		2	10.47 μM ± 0.35 a							
	NBD-Cl		6	0	.5	10.90 µM ± 0.1	2 a	-	4.58 ± 0.07 μM		uncompetitive		
			3		2	13.28 μM ± 0.56 b							
			6	2		119.61 μM ± 2.	92 a						
	Piceatann	ol	6	0.5		112.48 μM ± 5.82 b		-	65.8 ± 1.2 μM		uncompetitive		
			3	2		187.10 μM ± 13	3.48 c						
			6		2	117.80 μM ± 8.74 a							
	Resveratr	ol	6	0.5		101.32 μM ± 11.0 a		-	56.6 ± 2.5 μM		uncompetitive		
			3	2		$137.23 \ \mu\text{M} \pm 16.86 \ \text{b}$							
			6		2	0.54 mM ± 0.03 a			0.64 ± 0.08 μM		uncompetitive		
	Quercetir	ne	6	0	.5	0.60 mM ± 0.04		-					
			3	4	2	0.65 mM ± 0.07 a							
ble 2	ls	ATP	Ca ²⁺		IC ₅₀		k,		k' _i		Inhibitio		
		mM	n	nM								mechanis	
		3		2	$3.82 \mu\text{M} \pm 1.02 a$								
	NBD-Cl	3		0.5	6.94	μM ± 0.68 b	-			9.98 ± 0.95	μM	M uncompetiti	
		1		2	9.06	μM ± 1.21 c							
		3		2	82.9	8 μM ± 4.67 a							
	Piceatannol	3		0.5	69.1	5 μM ± 19.72 a ^{19.5}		: 0.2	μM	76.6 ± 1.6 μ	M	Mixed	
		1		2	63.0	7 μM ± 5.72 a						competitiv	
		3		2	33.3	5 μM ± 2.12 a							
											N /		

Table 1 shows the IC₅₀ values for the F_1 inhibitors (Is) under different experimental conditions: optimal assay conditions (6 mM ATP , 2 mM Mg²⁺), reduced cofactor concentration (6 mM ATP, 0.5 mM Mg²⁺) and reduced ATP concentration (3 mM ATP , 2mM Mg²⁺). K_i and K'_i values were obtained from the abscissa of the intercept of the straight lines in Dixon and Cornish-Bowden plots of the Mg^{2+} -activated F_1F_0 -ATPase at 2 mM Mg^{2+} and 3 mM or 6 mMATP.

Table 2 shows the IC_{50} values of the F₁ domain inhibitors under different assay conditions: optimal conditions (3 mM ATP, 2 mM Ca²⁺), reduced Ca²⁺ (3 mM ATP - 0.5 mM Ca^{2+}) and reduced ATP concentration (1 mM ATP, 2mM Ca²⁺). K_i and K'_i values were obtained from the abscissa of the intercept of the straight lines in Dixon and Cornish-Bowden plots of the Ca^{2+} -activated F_1F_0 -ATPase at 2 mM Ca²⁺ and 1 mM or 3 mM ATP.

Each point represents the mean ± SD from three independent experiments carried out on distinct mitochondrial preparations. Different letters indicate significantly different values $(P \leq 0.05)$. The statistical analysis (ANOVA followed by SNK test).

Purification of the F₁ domain and response to inhibitors

(II) and (III) replicate SDS–PAGE analysis of purified F_1 domain and the F_1 subunit migration bands and on the left-hand path, broad-range molecular markers of known molecular mass. The catalytic β subunit band identified by Western blot is shown below. Response of Ca^{2+} - B) and Mg^{2+} -dependent C) F_1 -ATPase activities to the inhibitors: $3 \mu g/ml$ oligomycin; 75 μ M NBD-Cl; 204 μ M piceatannol; 0.8 mM resveratrol; 0.75 mM quercetin. Each value represents the mean \pm SD from three independent experiments carried out on distinct F_1 preparations. The asterisk (*) indicates significantly different enzyme activity values ($P \le 0.05$) in the absence and in the presence of inhibitors

Conclusion

Fig.3

A)

The results confirm that Ca²⁺ binds to a bivalent cation site in F_1 and sustains ATP hydrolysis, even if by acting by a different mechanism from Mg²⁺, probably due to the Ca²⁺ higher size than Mg²⁺. Assumed that Ca²⁺ binding is responsible for the conformational changes in the enzyme complex which induce mPTP opening, the evidence that the inhibitors of the F₁ domain inhibit both the Ca²⁺-dependent \int ATPase activity and the mPTP opening strongly sustain the hypothesis that the two mechanisms are tightly related.

Table

References

1.Nesci, S., Trombetti, F., Ventrella, V., Pirini, M. & Pagliarani, A. Kinetic properties of the mitochondrial F₁F₀-ATPase activity elicited by Ca2+ in replacement of Mg2. Biochimie **140**, 73–81 (2017).

2.Nesci, S. A Lethal Channel between the ATP Synthase Monomers. *Trends Biochem. Sci.* 43, 311–313 (2018).

